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Indium chloride/silica gel supported synthesis
of pyrano/thiopyranoquinolines through intramolecular
imino Diels–Alder reaction using microwave irradiation
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Abstract

A facile synthesis of pyrano/thiopyranoquinolines is accomplished in excellent yields through imino Diels–Alder reaction using silica
gel impregnated with indium trichloride as catalyst.
� 2008 Elsevier Ltd. All rights reserved.
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The importance of pyranoquinoline derivatives is well
recognized by synthetic and biological chemists. Com-
pounds possessing these types of ring systems have wide
application as drugs and pharmaceuticals. Pyranoquino-
lines are an important class of compounds that constitute
the basic framework of a number of alkaloids of biological
significance, such as geibalasine, ribalinine, flindersine,1–3

simulenoline, huajiaosimuline, demethoxyzanthodioline,
khaplofoline, lunacrine and demethoxylunacrine.4,5 In
addition, thiopyranoquinolines are reported as interleu-
kin-1 inhibitors.6

It is therefore not surprising that many synthetic meth-
ods have been developed for these compounds.7–16 Among
them, the aza-Diels–Alder reaction between N-arylimines
with electron rich internal dienophiles is a powerful method
for the construction of polycyclic heterocyclic ring systems.
Since the pioneering work of Povarov,17 BF3�OEt2 has
been the most commonly used catalyst for this reaction.
Transition metal and transition metal complexes such as
Co2(CO)8 and Ni(CO)4 are also effective. However, many
of these catalysts are not fully satisfactory with regard to
operational simplicity and isolated yield. Hence, there is a
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quest to find a better and improved methodology for the
synthesis of such molecules.

Recently, microwave irradiation (MWI) has become an
established tool in organic synthesis,18–23 because of the
rate enhancements, higher yields and often, improved selec-
tivity, with respect to conventional reaction conditions. In
addition, solvent-free MW processes are also clean and effi-
cient and moreover, using either organic or inorganic solid
supports, have received increased attention.24 There are
several advantages of performing syntheses in solvent-free
media: (i) short reaction times, (ii) increased safety, (iii)
economic advantages due to the absence of solvent. Silica
gel is effective solid support because the end products can
easily be separated. Moreover, silica gel can function as a
mild acidic catalyst (Table 1).

In continuation of our interest in cycloaddition chemis-
try,25–27 we herein describe the excellent catalytic activity of
InCl3 in acetonitrile/silica gel impregnated InCl3

28 for the
synthesis of tetrahydropyrano/thioquinoline derivatives
through intramolecular imino Diels–Alder reaction.

Thus, 2-chloro-3-formylquinoline29 1 (prepared from
acetanilide, Scheme 1) on treatment with prenyl thiolate,
generated by the decomposition of S-prenyl isothiourea
salt with NaOH, furnished S-alkenyl aldehyde 330 in a
good 84% yield (Scheme 2).
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Table 1
Synthesis of tetrahydroquinoline[4,3:2,3]pyrano/thiopyrano[2,3-b]quinoline derivatives
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Method A Method B

Ratio of products
cis:trans

Time
(h)

Yield
(%)

Ratio of products
cis:trans

Time
(min)

Yield
(%)

1 H S 5a 6a 65:35 2 73 69:31 1 92
2 CH3 S 5b 6b 70:30 1.5 77 74:26 1.2 95
3 OCH3 S 5c 6c 76:24 1 87 75:25 1 97
4 Cl S 5d 6d 77:23 1.5 79 78:22 1.4 90
5 Br S 5e 6e 81:19 2.0 80 78:22 1.4 80
6 NO2 S 5f 6f 82:28 3.5 58 80:20 2.5 75
7 H O 9a 10a 67:33 2 71 68:22 1 89
8 CH3 O 9b 10b 70:30 1.5 73 73:27 1.2 93
9 OCH3 O 9c 10c 77:23 1 82 77:23 1 90

10 Cl O 9d 10d 79:21 1.5 75 81:19 1.4 89
11 Br O 9e 10e 80:20 2.0 79 82:18 1.4 87
12 NO2 O 9e 10f 83:27 3.5 55 84:26 3 89

Method A: InCl3 in CH3CN.
Method B: Silica gel impregnated InCl3 under microwave irradiation.
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S-Alkenyl aldehyde 3 thus prepared is well poised to
undergo imino Diels–Alder reactions with a variety of ani-
lines. Thus, the reaction of aniline 4a with 2-S-prenyl-3-
formylquinoline 3 in the presence of InCl3 in acetonitrile
resulted in the formation of a mixture of cis and trans
products 5a and 6a in the ratio 65:35 by intramolecular
cycloaddition reaction of the imine generated in situ in
the one pot– reaction (Scheme 3).

The ratio of the products was determined by isolating
the two diastereoisomers in pure form by flash column
chromatography and the stereochemistry of the products
was based on coupling constants in their 1H NMR spectra
and NOE experiments.

The structural assignments of the products were based
on the analysis of NMR spectra. Compound 5a exhibited
a doublet of triplets at d 2.11 (J = 3.3, 10.2 Hz) due to
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Scheme
Hb, a doublet of doublets at d 4.77 (J = 3.5, 11.2 Hz) for
Hc and a triplet at d 3.88 (J = 11.2 Hz) due to proton
Hd. The Ha proton appeared as a doublet at d 4.45
(J = 3.3 Hz). The coupling of Hd with Hb resulted in a dou-
blet with a large J value (J = 8.3 Hz) and this was further
split into a triplet with a small J value (J = 3.0 Hz) by cou-
pling of the Ha and Hc protons. The aromatic protons
exhibited multiplets in the region d 6.61–7.83.

The trans isomer 6a, exhibited a triplet of doublets at d
2.06 (J = 11.2, 3.3 Hz) for the Hb proton, a triplet at d 3.98
(J = 11.2 Hz) due to proton Hd, a doublet of doublets at d
4.89 (J = 3.3, 10.89 Hz) due to proton Hc, a doublet at d
4.45 (J = 11.4 Hz) due to proton Ha and multiplets in the
range d 6.68 and 7.89 due to the aromatic protons.

As a further extension of this work, reaction of 1 with
prenyl alcohol 7 at 0 �C in the presence of potassium
tert-butoxide yielded O-prenyl-3-formylquinoline31 (8) in
a good 72% yield (Scheme 4).

Under similar conditions,32 O-prenyl-3-formylquinoline
(8) reacted with various substituted anilines in the presence
of InCl3 in acetonitrile resulting in the formation of cis and
trans 9a–f and 10a–f in 55–71% yields (Scheme 5).

The stereochemistry of each isomer was assigned by 1H
NMR and NOE studies.33 In 9a, the coupling constant
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between Ha and Hb had a small J value (J = 3.2 Hz). This
indicates cis-fusion at the ring junction, which was further
confirmed by a strong NOE between Ha and Hb. For the
trans isomer, the coupling constant between Ha and Hb

had a large J value (J Ha–Hb = 9.0 Hz), the trans
arrangement was further confirmed by the absence of an
NOE.
R = H, Me, OMe, Cl, Br, NO2
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Further, we examined the effect of various solvents on
the above reaction and found acetonitrile to be the best sol-
vent for obtaining good yields of the products.

To improve the yield, we carried out the same reaction
using InCl3 impregnated silica gel as catalyst under micro-
wave irradiation and we found that there was a dramatic
increase in the overall yield of the products, but the ratio
of the cis and trans adducts remained almost the same in
all cases. The method avoids the use of a solvent and the
reaction was complete within 1–3 min.

Our attempts to accelerate the imino Diels–Alder cyclo-
addition by solid supported microwave irradiation were
successful. For example, the reaction of 3 with p-substi-
tuted nitroanilines took 3.5 h for completion when per-
formed using InCl3 in acetonitrile, whereas the same
cycloaddition using InCl3/silica gel under microwave irra-
diation was complete in 2.5 min (entry 6).
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In conclusion, the present procedure using indium tri-
chloride on silica gel provides an efficient one-pot synthesis
of novel pyranoquinoline derivatives. The notable advanta-
ges of this procedure are: (a) ecofriendly process (b) oper-
ational simplicity, (c) high reaction rate, (d) good yields
and (f) general applicability, We believe that this process
will provide a more practical alternative to the existing
methods for the synthesis of pyranoquinolines.
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1.71 (s, 3H, CH3), 1.74 (s, 3H, CH3), 2.06 (td, 1H, Hb, J = 11.2,
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6.20; N, 8.58. 8a,14b-cis-9,9-Dimethylquinolino[2,3-b]pyrano[40,30:
2,3]-8a,9,14,14b-tetrahydroquinoline 10a: mp 126–128 �C; 1H NMR
(400 MHz, CDCl3): d 1.73 (s, 3H), 1.44 (s, 3H), 1.81 (dt, J = 3.0,
8.3 Hz, 1Hb), 3.85 (t, J = 11.2 Hz, 1Hd), 4.26 (dd, J = 3.5, 11.2 Hz,
1Hc), 4.56 (d, J = 3.2 Hz, 1Ha), 6.36–7.24 (m, 9H); 13C NMR
(100 MHz, CDCl3): d 27.29, 27.95, 34.51, 43.95, 47.68, 65.61, 116.18,
117.11, 118.84, 120.86, 123.77, 125.62, 126.92, 127.03, 127.52, 128.53,
129.03, 131.50, 131.56, 143.05, 158.18; MS (EI) m/z = 316.16. Anal.
Calcd for C21H20N2O: C, 79.64; H, 6.32; N, 8.84. Found: C, 79.40; H,
6.47; N, 8.98.
8a,14b-trans-9,9-Dimethylquinolino[2,3-b]pyrano[40,30:2,3]-8a,9,14,14b-

tetrahydroquinoline 11a: mp 119–121 �C; 1H NMR (400 MHz,
CDCl3): d 1.73 (s, 3H), 1.79 (s, 3H), 2.08 (td, J = 3.0, 8.1 Hz, 1Hb),
3.93 (t, J = 11.1 Hz,1Hd), 4.48 (dd, J = 3.0, 7.8 Hz, 1Hc), 4.42
(d, J = 9.0 Hz, 1Ha), 6.66–7.32 (m, 9H). 13C NMR (100 MHz,
CDCl3): d 27.26, 27.85, 34.32, 43.51, 47.70, 65.73, 116.23, 117.16,
118.65, 120.74, 123.72, 125.68, 126.89, 127.11, 127.33, 128.43, 129.13,
131.52, 131.53, 143.25, 158.23; MS (EI) m/z = 316.16. Anal. Calcd for
C21H20N2O: C, 79.64; H, 6.32; N, 8.84. Found: C, 79.45; H, 6.47; N,
8.95.
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